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ABSTRACT
Efficiency is crucial to the online recommender systems, especially
for the ones which needs to deal with tens of millions of users and
items. Because representing users and items as binary vectors for
Collaborative Filtering (CF) can achieve fast user-item affinity com-
putation in the Hamming space, in recent years, we have witnessed
an emerging research effort in exploiting binary hashing techniques
for CF methods. However, CF with binary codes naturally suffers
from low accuracy due to limited representation capability in each
bit, which impedes it from modeling complex structure of the data.

In this work, we attempt to improve the efficiency without
hurting the model performance by utilizing both the accuracy
of real-valued vectors and the efficiency of binary codes to rep-
resent users/items. In particular, we propose the Compositional
Coding for Collaborative Filtering (CCCF) framework, which not
only gains better recommendation efficiency than the state-of-the-
art binarized CF approaches but also achieves even higher accuracy
than the real-valued CF method. Specifically, CCCF innovatively
represents each user/item with a set of binary vectors, which are
associated with a sparse real-value weight vector. Each value of the
weight vector encodes the importance of the corresponding binary
vector to the user/item. The continuous weight vectors greatly en-
hances the representation capability of binary codes, and its sparsity
guarantees the processing speed. Furthermore, an integer weight
approximation scheme is proposed to further accelerate the speed.
Based on the CCCF framework, we design an efficient discrete opti-
mization algorithm to learn its parameters. Extensive experiments
on three real-world datasets show that our method outperforms
the state-of-the-art binarized CF methods (even achieves better
performance than the real-valued CF method) by a large margin in
terms of both recommendation accuracy and efficiency. We publish
our project at https://github.com/3140102441/CCCF.
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1 INTRODUCTION
Real-world recommender systems often have to deal with large
numbers of users and items especially for online applications, such
as e-commerce or music streaming services [2, 3, 13, 14, 27]. For
many modern recommender systems, a de facto solution is often
based on Collaborative Filtering (CF) techniques, as exemplified
by Matrix Factorization (MF) algorithms [8]. The principle of MF
is to represent users’ preferences and items’ characteristics into r
low-dimensional vectors, based on them × n user-item interaction
matrix ofm users and n items. With the obtained user and item
vectors (in the offline training stage), during the online recommen-
dation stage, the preference of a user towards an item is computed
by the dot product of their represented vectors. However, when
dealing with large numbers of users and items (e.g., millions or
even billions of users and items), a naive implementation of typical
collaborative filtering techniques (e.g., based on MF) will lead to
very high computation cost for generating preferred item ranking
list for a target user [11]. Specifically, recommending the top-k pre-
ferred items for a user from those n items costsO(nr +n logk) with
real-valued vectors. As a result, this process will become a critical
efficiency bottleneck in practice where the recommender systems
typically require a real-time response for large-scale users simulta-
neously. Therefore, a fast and scalable yet accurate CF solution is
crucial towards building real-time recommender systems.

Recent years have witnessed extensive research efforts for im-
proving the efficiency of CF methods for scalable recommender sys-
tems. One promising paradigm is to explore the hashing techniques
[18, 33, 35] to represent users/items with binary codes instead of the
real-value latent factors in traditional MF methods. In this way, the
dot-products of user vector and item vector in MF can be completed
by fast bit-operations in the Hamming space [35]. Furthermore, by
exploiting special data structures for indexing all items, the compu-
tational complexity of generating top-K preferred items can achieve
sub-linear or even constant [26, 33], which significantly accelerates
the recommendation process.

However, learning the binary codes is generally NP-hard [5]
due to its discrete constraints. Given this NP-hardness, a two-stage

Session 2B: Collaborative Filtering SIGIR ’19, July 21–25, 2019, Paris, France

145

https://doi.org/10.1145/3331184.3331206
https://doi.org/10.1145/3331184.3331206
https://doi.org/10.1145/3331184.3331206


optimization procedure [18, 33, 35], which first solves a relaxed
optimization problem through ignoring the discrete constraints
and then binarizes the results by thresholding, becomes a compro-
mising solution. Nevertheless, this solution suffers from a large
quantization loss [30] and thus fails to preserve the original data
geometry (user-item relevance and user-user relationship) in the
continuous real-valued vector space. As accuracy is arguably the
most important evaluation metric for recommender systems, re-
searchers put lots of efforts to reduce the quantization loss by direct
discrete optimization [12, 16, 30]. In spite of the advantages of this
improved optimization method, compared to real-valued vectors,
CF with binary codes naturally suffers from low accuracy due to
limited representation capability in each bit, which impedes it from
modeling complex relationship between users and items.
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Figure 1: A toy example to illustrate the limitation of bi-
nary codes of Discrete Collaborative Filtering (DCF) [30].
v1, v2, v3, and v4 denote the real-valued vectors for item em-
beddings, and d1, d2, d3, and d4 denote the binary codes for
item embeddings. According to the film title and genres, v1
is the most similar to v2, followed by v3, while they are all
dissimilar to v4. However, the binary codes learned by DCF
cannot preserve the intrinsic similarity due to the limited
representation capability of binary codes.

Figure 1 gives an example to illustrate the limit of binary codes.
From the “film title" and “genres", we can see that Star Wars is the
most similar with Star Wars II, followed by The Matrix Reloaded, and
all of them are action movies while Titanic is remarkably dissimilar
to them which is categorized as a Drama movie. The real-valued
vectors could easily preserve the original data geometry in the
continuous vector space (e.g., intrinsic movie relationships), like
v1, v2, v3, and v4. However, if we preserve the geometric relations
of Star Wars, Star Wars II and The Matrix Reloaded by representing
them using the binary codes d1, d2, and d3 in the Hamming space,
the binary code of movie Titanic d4 will become close to d2 and d3,
which unfortunately leads to a large error.

In this work, we attempt to improve the efficiency without hurt-
ing the model performance. We propose a new user/item repre-
sentation named “Compositional Coding", which utilizes both the
accuracy of real-valued vectors and the efficiency of binary codes
to represent users and items. To improve the representation ca-
pability of the binary codes, each user/item is represented by G
components of r -dimensional binary codes (r is relatively small)
together with a G-dimensional sparse weight vector. The weight
vector is real-valued and indicates the importance of the corre-
sponding component of the binary codes. Compared to the binary
codes with same length (equal toGr ), the real-valued weight vector
significantly enriches the representation capability. Meanwhile, the

sparsity of the weight vector could preserve the high efficiency. To
demonstrate how it works, we derive the Compositional Coding for
Collaborative Filtering (CCCF) framework. To tackle the intractable
discrete optimization of CCCF, we develop an efficient alternat-
ing optimization method which iteratively solves mixed-integer
programming subproblems. Besides, we develop an integer approx-
imation strategy for the weight vectors. This strategy can further
accelerate the recommendation speed. We conduct extensive experi-
ments in which our promising results show that the proposed CCCF
method not only improves the accuracy but also boosts retrieval
efficiency over state-of-the-art binary coding methods.

2 PRELIMINARIES
In this section, we first review the two-stage hashing method for
collaborative filtering. Then, we introduce the direct discrete opti-
mization method, which has been used in Discrete Collaborative
Filtering (DCF) [30]. Finally, we discuss the limitation of binary
codes in representation capability.

2.1 Two-stage Hashing Method
Matrix Factorization (MF) is the most successful and widely used
CF based recommendation method. It represents users and items
with real-valued vectors. Then an interaction of the corresponding
user and item can be efficiently estimated by the inner product.
Formally, given a user-item interaction matrix R ∈ Rm×n withm
users and n items. Let ui ∈ Rr and vj ∈ Rr denote the latent vector
for user i and item j respectively. Then, the predicted preference of
user i towards item j is formulated as r̂i j = u⊤i vj . To learn all user
latent vectors U = [u1, . . . , um ]⊤ ∈ Rm×r and item latent vectors
V = [v1, . . . , un ]⊤ ∈ Rn×r , MF minimizes the following regularized
squared loss on the observed ratings:

arg min
U,V

∑
(i , j)∈V

(Ri j − u⊤i vj )
2 + λR(U,V), (1)

where V denotes the all observed use-item pairs and R(U,V) is
the regularization term with respect to U and V controlled by
λ > 0. To improve recommendation efficiency, after we obtain
the optimized user/item real-valued latent vectors, the two-stage
hashing method use binary quantization (rounding off [33] or ro-
tate [18, 35]) to convert the continuous latent representations into
binary codes. Let us denote B = [b1, . . . , bm ]⊤ ∈ {±1}m×r and
D = [d1, . . . , dn ]⊤ ∈ {±1}n×r respectively as r -length user/item
binary codes, then the inner product between the binary codes of
user and item can be formulated as b⊤i dj = 2H (bi , dj ) − r , where
H (·) denotes the Hamming similarity. Based on fast bit operations,
Hamming distance computation is extremely efficient. However,
this method usually incurs a large quantization error since the bi-
nary bits are obtained by thresholding real values to integers, and
thus it cannot preserve the original data geometry in the continuous
vector space [30].

2.2 Direct Discrete Optimization Method
To circumvent the above issues, direct discrete optimization method
has been proposed in Discrete Collaborative Filtering (DCF) [30]
and widely studied in other researches[12, 16, 31]. More formally,
it learns the binary codes by optimizing the following objective
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function:

arg min
B,D

∑
(i , j)∈V

(Ri j − b⊤i dj )
2 + λR(B,D)

s .t . B ∈ {±1}m×r ,D ∈ {±1}n×r . (2)

This objective function is similar to that of a conventional MF task,
except the discrete constraint on the user/item embeddings. By
additionally imposing balanced and de-correlated constraints, it
could derive compact yet informative binary codes for both users
and items.

However, compared to real-valued vectors, CF with binary codes
naturally suffers from low accuracy due to limited representation
capability in each bit. Specifically, the r -dimensional real-valued
vector space have infinite possibility to model users and items,
while the number of unique binary codes in Hamming space is
2r . An alternative way to resolve this issue is to use a longer code.
Unfortunately, it will adversely hurt the generalization of the model
especially in the sparse scenarios.
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Figure 2: Illustration of how the compositional coding
framework makes a prediction for user i given item j.

3 COMPOSITIONAL CODING FOR
COLLABORATIVE FILTERING

3.1 Intuition
In this work, we attempt to improve the efficiency of CF without
hurting the prediction performance. We propose a new user/item
representation named “Compositional Coding", which utilizes both
the accuracy of real-valued vectors and the efficiency of binary
codes to represent users and items. Since the fixed distance between
each pair of binary codes impedes them from modeling different
magnitudes of relationships between users and items, we assign real-
valued weight to each bit to remarkably enrich their representation
capability. Besides, this importance parameters could implicitly
prune unimportant bits by setting their importance parameters
close to 0, which naturally reduces the computation cost.

3.2 Overview
In general, the proposed compositional coding framework assumes
each user or item is represented byG components of r -dimensional
binary codes (r is relatively small) and one G-dimensional sparse

weight vector. Formally, denote by

b(1)i , . . . , b
(G)
i ∈ {±1}r ,ηi =

(
η
(1)
i , · · · ,η

(G)
i

)
∈ RG

the compositional codes for the i-th user, and

d(1)j , . . . , d
(G)
j ∈ {±1}r , ξ j =

(
ξ
(1)
j , · · · , ξ

(G)
j

)
∈ RG

the compositional codes for the j-th item, respectively. Then the
predicted preference of user i for item j is computed by taking the
weighted sum of the inner product with respect to each of the G
components:

r̂i j =
G∑
k=1

w (k )i j (b
(k )
i )
⊤d(k )j , (3)

where w
(k)
i j = η

(k )
i · ξ

(k)
j is the importance weight of the k-th

component of binary codes with respect to user i and item j.
Figure 2 illustrates how to estimate a user-item interaction us-

ing compositional codes. The inner product of each component
of binary codes (b(k )i )

⊤d(k )j can be efficiently computed in Ham-
ming space using the fast bit operations. The importance weight
of the k-th component of binary codes w(k )i j is obtained through
a multiplication operation over η(k )i and ξ

(k )
j , which ensures that

the importance weight will be assigned a high value if and only if
both user and item weights are large and will become zero if either
of them is zero. It is worth noting that we use the multiplication
instead of addition operation over the user and item weight to
achieve the high sparsity of the sparse weight vector, which can
lead to a significant reduction of computation cost during online
recommendation.

Compared to representing users/items with binary codes, the
key advantage of the proposed framework is that the sparse real-
valued weight vector substantially increases the representation
capacity of user/item embeddings by the compositional coding
scheme. Recalling the example shown in Figure 1, we can preserve
the movie relations by assigning themwith different weight vectors,
so as to predict user-item interactions with a lower error. Another
benefit is mainly from the idea of compositional matrix approxima-
tion [10, 32], which is more suitable for real-world recommender
systems, since the interaction matrix is very large and composed
of diverse interaction behaviours. Under this view, the proposed
compositional coding framework is characterized by multiple com-
ponents of binary codes. Each component of binary codes can be
employed to discover the localized relationships among certain
types of similar users and items and thus can be more accurate in
this particular region (e.g., young people viewing action movies
while old people viewing romance movies). Therefore, the proposed
compositional coding framework can encode users and items in a
more informative way.

In addition to the improved representation and better accuracy,
the compositional coding framework does not lose the high effi-
ciency advantage of binary codes, and can even gain more efficiency
when imposing sufficient sparsity. In order to show this, we analyze
the time cost of the proposed framework and compare it against
the conventional binary coding framework. In particular, assume
the time cost of calculating the Hamming distance of r -bit codes is
Th and the time cost of weighted summation of all of inner product
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results is Ts , then the total cost for a user-item similarity search is
nnz(w) ×Th +Ts ,

where nnz(w) denotes the average number of non-zero values in
component weight vector w ∈ RG , which is much smaller than G
in our approach due to the sparsity of the user and item weights.
Similarly, the cost by conventional hashing based CF models using
(G × r )-bit binary codes is G ×Th which can be higher than ours.

Remark. The proposed compositional coding framework is
rather general. When identical weight vectors are used, it is de-
graded to the binary codes of conventional hashing based CF meth-
ods. Compositional codes could also be regarded as real-valued
latent vectors of CF model, if we adopt the identical binary codes
for each component. In summary, compositional code is a flexible
representation which could benefit from both the strong representa-
tion capability of real-valued vectors and the fast similarity search
of binary codes.

3.3 Formulation
In this section, we instantiate the compositional coding framework
onMatrix Factorization (MF) models and term the proposed method
as the Compositional Coding for Collaborative Filtering (CCCF).
Note that the proposed compositional coding framework can be
potentially applicable to other types of CF models beyond MF.

Follow the intuition of compositional coding, we assume that
there exists a distance function d that measures distances in the
space of users (i = 1, . . . ,m) or items (j = 1, . . . ,n). The distance
function leads to the notion of neighborhoods of user-user and item-
item pairs. Its assumption states that the rating of user-item pair
(i, j) could be approximated particularly well in its neighbourhood.
Thus, we identify G components surrounding K anchor points
(i ′1, j

′
1), . . . , (i

′
G , j
′
G ). Follow the setting of compositional matrix ap-

proximation [9, 10], user weight η(k )i can be instantiated with an
Epanechnikov kernel1 [25], which is formulated as:

η(k )i =
3
4

(
1 − d (i , i′t )2

)
1
[
d (i , i′t ) < h

]
, (4)

whereh > 0 is a bandwidth parameter, 1[·] is the indicator function
and d(·) is a distance function to measure the similarity between i
and i ′t (we will discuss it in Section 3.6). A large value of h implies
thatηi has a wide spread, which means most of the user component
weights are non-zero. In contrast, a small h corresponds to narrow
spread of ηi and most of the user components will be zero. Item
weight ξ (k)j follows the analogous formulation. In this way, we could
endow the weight vectorw(k )i j for user-item pair, which is defined
as multiplication over user and item weight, with the sparsity. The
method for selecting anchor points for each component is important
as it may affect the values of component weights and further affect
the generalization performance. A natural way is to uniformly
sample them from the training set. In this work, we run k-means
clustering with the user/item latent vectors and use theG centroids
as anchor points.

To learn the compositional codes, we adopt the squared loss to
measure the reconstruction error as the standard MF method. For
each set of binary codes, in order to maximize the entropy of each

1Similar to [9], we also tried uniform and triangular kernel, but the performance was
worse than Epanechnikov kernel, in agreement with the theory of kernel smoothing
[25].

bit and make it as independent as possible, we impose balanced
partition and decorrelated constraints. In summary, learning the
compositional codes for users and items can be formulated into the
following optimization task:

min
∑
(i , j )∈V

(
Ri j −

G∑
k=1

w (k )i j (b
(k )
i )
⊤d(k )j

)2

s.t. 1mB(k ) = 0, 1nD(k ) = 0︸                          ︷︷                          ︸
balanced partition

, (B(k ))⊤B(k ) =mIr , (D(k ))⊤D(k ) = nIr︸                                              ︷︷                                              ︸
decorrelation

B(k ) ∈ {±1}m×r , D(k ) ∈ {±1}n×r , k = 1, . . . ,G . (5)

where we denote B(k ) = [b(k )1 , . . . , b
(k )
m ]
⊤ ∈ {±1}m×r and D(k ) =

[d(k )1 , . . . , d
(k)
n ]
⊤ ∈ {±1}n×r respectively as user and item binary

codes in the k-th set of binary codes. The problem formulated
in (5) is a mixed-binary-integer program which is a challenging
task since it is generally NP-hard and involves a combinatorial
search overO(2Gr (m+n)). An alternative way is to impose auxiliary
continuous variables X(k ) ∈ B and Y(k ) ∈ D for each set of binary
codes, where B(k ) = {X(k) ∈ Rm×r |1mX(k) = 0, (X(k ))⊤X(k ) =
mIr } and D(k ) = {Y(k ) ∈ Rn×r |1nY(k ) = 0, (Y(k ))⊤Y(k ) = nIr }.
Then the balanced and de-correlated constraints can be softened
by minX(k )∈B(k ) ∥B(k) − X(k)∥F and minY(k )∈D(k ) ∥D(k ) − Y(k )∥F ,
respectively. Finally, we can solve problem (5) with respect to the
k-the set of codes in a computationally tractable manner:

min
B(k ) ,D(k ) ,X(k ) ,Y(k )

∑
(i , j )∈V

(
Ri j −

G∑
k=1

w (k )i j (b
(k )
i )
⊤d(k )j

)2

+ α1 ∥B(k ) − X(k ) ∥F + α2 ∥D(k ) − Y(k ) ∥F

s.t. B(k ) ∈ {±1}m×r , D(k ) ∈ {±1}n×r , (6)

where α1 and α2 are tuning parameters. Since tr((B(k ))⊤B(k )) =
tr((X(k))⊤X(k )) =mr , and tr((D(k))⊤D(k )) = tr((Y(k ))⊤Y(k )) = nr ,
the above optimization task can be turned into the following

min
B(k ) ,D(k ) ,X(k ) ,Y(k )

∑
(i , j )∈V

(Ri j −
G∑
k=1

w (k )i j (b
(k )
i )
⊤d(k )j )

2

− 2α1tr((B(k ))⊤X(k )) − 2α2tr((D(k ))⊤Y(k ))

s.t. 1mX(k ) = 0, 1nX(k ) = 0, (Y(k ))⊤Y(k ) =mIr , (Y(k ))⊤Y(k ) = nIr

B(k ) ∈ {±1}m×r , D(k ) ∈ {±1}n×r , (7)

which is the proposed learning model for CCCF. Note that we do
not discard the binary constraints but directly optimize the binary
codes of each component. Through joint optimization for the binary
codes and the auxiliary real-valued variables, we can achieve nearly
balanced and un-correlated binary codes. Next, we will introduce
an efficient solution for the mixed-integer optimization problem in
Eq. (7).

3.4 Optimization
We employ alternative optimization strategy to solve the above
problem. Each iteration alternatively updates B(k ), D(k), X(k ) and
Y(k ). The details are given below.

Learning B(k ) and D(k): In this subproblem, we update B(k )

with fixed D(k ), X(k) and Y(k ). Since the objective function in Eq.
(7) is based on summing over users of each component indepen-
dently, so we can update binary codes for each user and item in
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parallel. Specifically, learning binary codes for user i with respect
to component k is to solve the following optimization problem:

min
b(k )i ∈{±1}r

(b(k )i )
⊤

( ∑
j∈Vi

(w (k )i j )
2d(k )j (d

(k )
j )
⊤

)
b(k )i

− 2
( ∑
j∈Vi

r̃i j (d
(k )
j )
⊤
)
b(k )i − 2α1(x

(k )
i )
⊤b(k )i , (8)

where r̃i j = ri j −
∑
k̃,k w

k̃
i j (b

k̃
i )
⊤dk̃j is the residual of observed

rating excluding the inner product of component k .
Due to the discrete constraints, the optimization is generally

NP-hard, we adopt the bitwise learning method called Discrete
Coordinate Descent [21, 22] to update b(k)i . In particular, denoting
b
(k)
iq as the qth bit of b(k )i and b(k )iq̄ as the rest codes excluding b(k )iq ,

DCD update b(k)iq while fixing b(k )iq̄ . Thus, the updating rule for user

binary code b(k )iq can be formulated as

b
(k )
iq ← sдn(O(−b̂

(k )
ik ,b

(k )
iq )) (9)

where b̂(k )iq =
∑
j ∈Vi (r̃i j − (w

(k )
i j )

2(d(k )jq̄ )
⊤b(k )iq̄ )d

(k )
jq + α1x

(k )
iq , d(k )jq̄ is

the rest set of item codes excluding djk and O(x,y) is a function
that O(x,y) = x if x , 0 and O(x,y) = y otherwise. We iteratively
update each bit until the procedure convergence. Note that the com-
putational complexity of updating B(k ) is O

(
#iter (mnr2)

)
which is

a critical efficiency bottleneck whenm or n is large. To efficiently
compute b̂(k )iq , we rewrite b̂(k )iq as

b̂ (k )iq =
∑
j∈Vi

r̃i jd
(k )
jq −

∑
j∈Vi

(w (k )i j )
2(d(k )j )

⊤b(k )i d (k )jq +
∑
j∈Vi

b (k )iq + α1x
(k )
iq ,

which reduces the computational cost to O
(
#iter (m + n)r2) .

Similarly, we could learn binary code for item j in component k
by solving

min
d(k )j ∈{±1}r

(d(k )j )
⊤(

∑
i∈Vj

(w (k )i j )
2b(k )i (b

(k )
i )
⊤)d(k )j

− 2(
∑
i∈Vj

r̃i j (b
(k )
i )
⊤)d(k )j − 2α2(y

(k )
j )
⊤d(k )j .

Denote d(k )jq as the q-th bit of d(k )j and d(k )jq̄ as the rest codes exclud-

ing d(k )jq , we update each bit of d(k )j according to

d (k )jq ← sдn(O (−d̂ (k )jq , d (k )jq )) (10)

where d̂(k )jq =
∑
i ∈Vj (r̃i j − (w

(k )
i j )

2(b(k )iq̄ )
⊤d(k )jq̄ )b

(k)
iq + α2y

(k)
jq .

Learning X(k) and Y(k):When fixing B(k ), learning X(k) could
be solved via optimizing the following objective function:

max
X(k )

tr (B(k )(X(k ))⊤), 1⊤mX(k ) = 0, (X(k ))⊤X(k ) =mIr .

It can be solved by the aid of SVD according to [17]. Let B̄(k) be
a column-wise zero-mean matrix, where B̄(k )i j = B

(k)
i j −

1
m

∑
i B
(k)
i j .

Assuming B̄(k) = P(k )b Σ(k )b (Q
(k)
b )
⊤ as its SVD, where each column

of P(k )b ∈ Rm×r
′ and Q(k )b ∈ Rr×r

′ represents the left and right
singular vectors corresponding to r ′ non-zero singular values in
the diagonal matrix Σ(k)b . Since B̄(k) and Q(k )b have the same row,

we have 1⊤P(k )b = 0 due to 1⊤B̄(k ) = 0. Then we construct ma-
trices P̂(k )b of size m × (r − r ′) and Q̂(k )b of size r × (r − r ′) by
employing a Gram-Schmidt process such that ( P̂(k ))⊤b P̂

(k )
b = Ir−r ′ ,

[P(k )b 1]⊤P̂(k)b = 0, and (Q̂(k )b )
⊤Q̂b = Ir−r ′ , [Q(k )b 1]⊤Q̂(k)b = 0. Now

we obtain a closed-form update rule for X(k ):

X(k ) ←
√
m[P(k )b , P̂(k )b ][Q

(k )
b , Q̂(k )b ]

⊤ . (11)

In practice, to compute such an optimal X(k ), we perform the
eigendecomposition over the small r × r matrix

(B̄(k ))⊤B̄(k ) = [Q(k )b Q̂(k )b ]

[
(Σ(k ))2 0

0 0

]
[Q(k )b Q̂(k )b ]

⊤,

which provides Q(k )b , Q̂
(k )
b , Σ

(k ), and we can obtain

P(k )b = B̄(k )Q(k )b (Σ
(k ))−1.

Then matrix P̂(k )b can be obtained by the aforementioned Gram-
Schmidt orthogonalization. Note that it requiresO

(
r2m

)
to perform

SVD, Gram-Schimdt orthogonalization and matrix multiplication.
When D(k ) fixed, learning Y(k ) could be solved in a similar way:

max
Y(k )

tr (D(k )(Y(k ))⊤), 1⊤nY
(k ) = 0, (Y(k ))⊤Y(k ) = nIr .

We can obtain an analytic solution:

Y(k ) ←
√
n[P(k )d , P̂(k )d ][Q

(k )
d , Q̂(k )d ]

⊤ . (12)

where each column of P(k )d and Q(k )d is the left and right singular
vectors of D̄(k ) respectively. Q̂(k )d are the left singular vectors cor-
responding to zero singular values of the r × r matrix (D̄(k ))⊤D̄(k ),
and P̂(k )d are the vectors obtained via the Gram-Schimidt process.
We summarize the solution for CCCF in Algorithm 1.

Algorithm 1 The proposed algorithm for Compositional Coding
for Collaborative Filtering (CCCF) .

Input: R ∈ Rm×n

Output: B(k ) ∈ {±1}r×m,D(k ) ∈ {±1}r×n
Parameters: number of components G, code length r , regular-
ization coefficient α1,α2, bandwidth parameter h
Initialize B(k ),D(k ) and X(k ),Y(k ) ∈ Rm×n by Eq. (13).
while not converged do

for k = 1, · · · ,G parallel do
Pick anchor points (i ′k , j

′
k ).

for u = 1, · · · ,m do
Update b(k )i according to (9)

end for
for i = 1, · · · ,n do

Update d(k )j according to (10).
end for
Update X(k ) and Y(k ) according to (11) and (12).

end for
end while
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3.5 Initialization
Note that the proposed optimization problem involves a mixed-
integer non-convex problem, the initialization of model parameters
plays an important role for fast convergence and for finding better
local optimum solution. To achieve a good initialization in an effi-
cient way, we essentially relax the binary constraints in Eq. (7) into
the following optimization:

min
U(k ) ,V(k ) ,X(k ) ,Y(k )

∑
(i , j )∈V

(
Ri j −

G∑
k=1

w (k )i j (u
(k )
i )
⊤v(k )j

)2
(13)

−2α1tr((B(k ))⊤X(k )) − 2α2tr((V(k ))⊤Y(k )) + α3 ∥U(k ) ∥2F + α4 ∥V(k ) ∥2F
s.t. 1mX(k ) = 0, 1nX(k ) = 0, (Y(k ))⊤Y(k ) =mIr , (Y(k ))⊤Y(k ) = nIr ,

We first initialize real-valued matrix U(k ) and V(k ) randomly
and find the feasible solution for X(k ) and Y(k) according to the
above learning method with respect to X(k ) and Y(k ). Then the
alternating optimization are conducted by updating U and V with
traditional gradient descent method and updating X and Y with
respect to the similar learning method. Once we obtain the solu-
tion (U(k)0 ,V

(k )
0 ,X

(k)
0 ,Y

(k )
0 ), we can initialize CCCF with respect to

component k as:

B(k ) ← sgn(U(k )0 ), D
(k ) ← sgn(V(k )0 ), X

(k ) ← X(k )0 , Y(k ) ← Y(k )0 . (14)

The effectiveness of the proposed initialization will be discussed
in Section 4.1 (illustrated in Figure 14).

3.6 Distance Function
Previously we assume a general distance function d , which is de-
fined to measure the distance between users or items so as to com-
pute the component weights w(k )i and v(k )j in Eq. (4). The metric
can be constructed with side information, like users’ social link
[28, 34] or using metric learning techniques [29]. However, many
datasets do not include such data. In this work, we follow the idea
of [9, 10] which factorizes the observed interaction matrix using
MF and obtain two latent representation matrices U and V for users
and items, respectively. Then the distance between two users can be
computed by the cosine distance between the obtained latent rep-
resentations, which is formulated as d(ui ,uj ) = arccos

(
⟨ui ,uj ⟩
∥ui ∥ · ∥uj ∥

)
.

The distance between two items can be computed in the same way.

3.7 Complexity
The computational complexity of training CCCF isK times the com-
plexity of learning each set of binary codes. It converges quickly in
practice, which usually takes about 4 ∼ 5 iterations in our experi-
ments. For each iteration, the computational cost for updating B(k )
and D(k ) is O

(
#iter (m + n)r2) . In practice, #iter is usually 2 ∼ 5.

The computational cost for updating X(k ) and Y(k) is O
(
r2m

)
and

O
(
r2n), respectively. Suppose the entire algorithm requires T itera-

tions for convergence, the overall time complexity for Algorithm 1
isO(Tqr2(m +n)), where we foundT empirically is no more than 5.
In summary, CCCF is efficient and scalable because it scales linearly
with the number of users and items.

3.8 Fast Retrieval via Integer Weight Scaling
Floating-point operations over user and item weight vectors invoke
more CPU cycles and are usually much slower than integer com-
putation. The cost of top-k recommendation would be remarkably
lower when the scalars in the weight vectors are integers instead
of floating numbers. An intuitive way is to adopt integer approxi-
mation via rounding the scalars in user and item weight vectors.
However, if the weights are too small, it will incur large deviation.
To tackle this problem, we scale the original scalars by multiply-
ing each weight by e and then approximate them with integers in
preprocessing,

η̂i =
{
⌊e · η(1)i ⌉, . . . , ⌊e · η

(G )
i ⌉

}
, ξ̂ j =

{
⌊e · ξ (1)j ⌉, . . . , ⌊e · ξ

(G )
j ⌉

}
,

where ⌊e · η(k )i ⌉ is a round function to obtain an integer approxi-
mation with respect to e · η(k )i .

4 EXPERIMENTS
In order to validate the effectiveness and efficacy of the proposed
CCCF method for recommender systems, we conduct an extensive
set of experiments to examine different aspects of our method
in comparison to state-of-the-art methods based on conventional
binary coding. We aim to answer the following questions:
RQ1: How does CCCF perform as compared to other state-of-the-

arts hashing based recommendation methods in terms of
both accuracy and retrieval time?

RQ2: How do different hyper-parameter settings (e.g., number of
components, and code length) affect the accuracy of CCCF ?

RQ3: How do the sparsity of component weight vectors (controlled
by the bandwidth parameter h) and integer scaling (con-
trolled by parameter e) affect both the accuracy and retrieval
cost of CCCF? How to choose optimal values ?

RQ4: Does the representation of compositional codes in CCCF
enjoy a much stronger representation capability than the
traditional binary codes in DCF given the same model size ?

4.1 Experimental Settings
4.1.1 Datasets and Settings. We run our experiments on three

public datasets: Movielens 1M2, Amazon and Yelp3 which arewidely
used in the literature. All of these ratings range from 0 to 5. Consid-
ering the severe sparsity of Yelp and Amazon original datasets, we
followed the conventional filtering strategy [20] by removing users
and items with less than 10 ratings. The statistics of the filtered
datasets are shown in Table 1. For each user, we randomly sampled
70% ratings as training data and the rest 30% for test. We repeated
for 5 random splits and reported the averaged results.

Dataset #Ratings #Items #Users #density
Movielens 1M 1,000,209 3900 6040 4.2%
Yelp 696,865 25,677 25,815 0.11%
Amazon 5,057,936 146,469 189,474 0.02%
Table 1: Summary of datasets in our experiments.

2http://grouplens.org/datasets/movielens
3http://www.yelp.com/dataset challenge
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4.1.2 Parameter Settings and Performance Metrics. For
CCCF, we vary the number of components and the code length of
each component in range {4, 8, 12, 16}. The hyper-parameters α and
β are tuned within {10−4, 10−3, . . . , 102}. Grid search is performed
to choose the best parameters on the training split. We evaluate our
proposed algorithms by Normalized Discounted Cumulative Gain
(NDCG) [6], which is probably the most popular ranking metric
for capturing the importance of retrieving good items at the top
of ranked lists. The average NDCG at cut off [2, 4, 6, 8, 10] over
all users is the final metric. A higher NDCG@K reflects a better
accuracy of recommendation performance.

4.1.3 Baseline Methods and Implementations. To validate
the effectiveness of CCCF, we compare it with several state-of-the-
art real-valued CF methods and hashing-based CF methods:
• MF: This is the classic Matrix Factorization based CF algorithm
[8], which learns real-valued user and item latent vectors in
Euclidean space.
• BCCF: This is a two-stage binarized CF method [35] with a
relaxation stage and a quantization stage. At these two stages,
it successively solves MF with balanced code regularization and
applies orthogonal rotation to obtain user codes and item codes.
• DCF: This is the first method [30] directly tackles a discrete op-
timization problem for seeking informative and compact binary
codes for users and items.
• DCMF: This is the state-of-the-art binarized method [12] for
CF with side information. It extends DCF by encoding the side
features as the constraints for user codes and item codes.
The CCCF algorithm empirically converges very fast and using

the initialization generally helps as shown in Figure 3.
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Figure 3: Convergence of the overall objective values and
NDCG@10 of CCCF with/without initialization on the
Movielens 1M dataset. The use of the proposed initialization
leads to faster convergence and better results.

4.2 Experimental Results
4.2.1 Comparisons with State-of-the-arts (RQ1). Figure 4

shows the results of top-k recommendation with k setting from
2 to 10. Note that the number of components G is fixed to 8 and
the code length of each component varies in {4, 6, 8, 10, 12, 14, 16}.
For fair comparison, the code length of DCF and the rank of MF
are equal to the total bits of CCCF, which are equivalent to the
summation of each component’s code length of CCCF (rG), so that
the performance gain is not from increasing model complexity.
From Figure 4, we can draw the following major observations:

First of all, we observe that CCCF considerably outperforms
BCCF, DCF and DCMF which are the state-of-the-art hashing based
CF methods. The performance of CCCF and DCF continiously in-
crease as we increase the code length. Surprisingly, CCCF can

even achieve remarkable superior performance using only 32 bits
in comparison to the DCF using 128 bits on three datasets. This
improvement indicates the impressive effectiveness of learning
compositional codes.

Second, between baseline methods, DCF consistently outper-
forms BCCF, while slightly underperforms DCMF. This is consistent
with the findings in [30] that the performance of direct discrete opti-
mization could surpass that of the two-stage methods. Besides, side
information makes user codes and item codes more representative,
which improves the recommendation performance.

Moreover, it is worth mentioning that CCCF outperforms MF,
which is a real-valued CF method, particularly on the Amazon and
Yelp dataset. The reasons for this are two-fold. First, compositional
structure of CCCF has a much stronger representation capability
which could discover complex relationships among users and items.
Second, the higher sparsity of the dataset makes MF easy to overfit,
whereras the binarized and sparse parameters in CCCF could alle-
viate this issue. This finding again demonstrates the effectiveness
of our method.

Dataset CCCF MF DCF
Time Time Speedup Time Speedup

Movielens 1M 7.12 49.66 ×6.97 10.64 ×1.49
Amazon 831.34 5917.56 ×7.12 1231.35 ×1.48
Yelp 184.48 1450.25 ×7.86 264.65 ×1.43

Table 2: Retrieval time (in seconds) of recommendation
methods on three datasets, ’Speedup’ indicates the speedup
(×) of CCCF (G = 8, r = 16) over baselines.

Finally, Table 2 shows the total time cost (in seconds) taken by
each method to generate the top-k item list of all items. Overall, the
hashing based methods (DCF and CCCF) outperform real-valued
methods (MF), indicating the great advantage of binarizing the real-
valued parameters. Moreover, CCCF shows superior retrieval time
compared to DCF while enjoying a better accuracy. Thus, CCCF is
a suitable model for large-scale recommender systems where the
retrieval time is restricted within a limited time quota.

4.2.2 Impact ofHyper-parameterG and r (RQ2). OurCCCF
has two key parameters, the number of components G and code
length r , to control the complexity and capacity of CCCF. Figure
5(a) and 5(b) evaluate how they affect the recommendation perfor-
mance under varied total bits and fixed total bits. In Figure 5(a), we
vary the code length r from 4 to 16 and the component number
G from 1 to 16. We can see that increasing G leads to continued
improvements. When G is larger than 8, the improvement tends
to become saturated as the number of components increases. In
addition, a larger value ofG would lead to relatively longer training
time. Similar observations can be found from the results of hyper-
parameter r evaluation. In Figure 5(b), we fix the total bits rG in
range {32, 64, 96, 128} and varies the component number G from 1
to 32. It should be noted that when G = 1, CCCF model is identical
to DCF model. As we gradually increase component numberG , the
recommendation performance grows since the real-valued com-
ponent weight could enhance the representation capability. The
best recommendation performance is achieved when G = 8 or 16.
When G is larger than the optimal values, increasing G will hurt
the performance. The main reason is that we fix the total bits rG , so
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Figure 4: Item recommendation performance comparison of NDCG@K with respect to code length in bits.
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Figure 5: Performance of CCCF with respect to code length in bits (r) and number of components (G).

that larger values of G lead to smaller values of r . This will reduce
the learning space of CCCF since the component weight is calcu-
lated by a predefined distance function which does not consider
the rating information.

4.2.3 Impact of sparsity of componentweight and integer
weight scaling (RQ3). To demonstrate the effectiveness of the
integer weight scaling in accuracy and retrieval time , we run two
versions of CCCF: EXACT and IWS. EXACT does not adopt the
proposed integer weight scaling strategy. IWS uses the integer
weight scaling described in Section 3.8. Figure 6 summarizes the
speedup of the two versions of CCCF. The retrieval cost is not
sensitive to the integer scaling parameter e and we set e to 100. We
can see the gap between the versions is consistent over Amazon
and Yelp dataset. The low cost of IWS validates the effectiveness
of the integer scaling which replaces the floating-point operations
with the fast integer computation.

Figure 7 shows the impact of hyper-parameter e on the accuracy
of CCCF. We can find that when e is smaller than 100, the increase
of e leads to gradual improvements. When e is larger than 100,
further increasing its value cannot improve the performance. This
indicates that IWS is relatively insensitive when e is sufficiently
large. We thus suggest to set e to 100.
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Figure 6: Retrieval cost of the naive version and IWS version.
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Figure 7: Performance of CCCF with different e values.

To reveal the impact of sparsity of component weight in accuracy
and retrieval cost, we vary the bandwidth hyperparameter h from
0.5 to 1. It is obvious that decreasing the value of h will increasing
the sparsity of component weights. Figure 8 shows the accuracy
and retrieval cost of CCCF for different h. First, we can see that the
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retrieval cost of CCCF is continuously reduced as we decrease the
values of h since high sparsity lead to fast computation. Second, we
observe that the best recomendation performance is achieved when
h = 0.7 ∼ 0.8. When h is smaller than 0.7 ∼ 0.8, increasing the
sparsity will make CCCF robust to overfitting. However, when the
sparsity level is quite high, the CCF model might not be informative
enough for prediction and thus suffer performance degradation.
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Figure 8: Item recommendation performance and retrieval
cost of CCCFwith differenth values (controlling the sparsity
of user/item component weights).

4.2.4 Item Embeddings Visualization (RQ4). The key ad-
vantage of compositional codes is the stronger representational
capability in comparison to binary codes. Therefore we visualize
the learned item embeddings of the movielens 1M dataset where
items are indicated as movies. We use the item representations
learned by DCF and CCCF as the input to the visualization tool t-
SNE [19]. As a result, each movie is mapped into a two-dimensional
vector. Then we can visualize each item embedding as a point on
a two dimensional space. For items which are labelled as different
genres, we adopt different colors on the corresponding points. Thus,
a good visualization result is that the points of the same color are
closer to each other. The visualization result is shown in Figure
9. We can find that the result of DCF is unsatisfactory since the
points belonging to different categories are mixed with each other.
For CCCF, we can observed clear clusters of different categories.
This again validates the advantage of much stronger representation
power of the compositional codes over traditional binary codes.
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Figure 9: Visualization of Moivelens 1M dataset. Each point
indicates one item embedding (movie). The color of a point
indicates the genre of the movie.

5 RELATEDWORK
As a pioneer work, Locality-Sensitive Hashing has been adopted for
generating hash codes for Google News readers based on their click
history [4]. Following this work, random projection was applied for
mapping learned user/item embeddings from matrix factorization
into the Hamming space to obtain binary codes for users and items
[7]. Similar to the idea of projection, Zhou et al. [35] generated
binary codes from rotated continuous user/item representations by
running Iterative Quantization. In order to derive more compact
binary codes, the de-correlated constraint over different binary
codes was imposed on user/item continuous representations and
then rounded them to produce binary codes [18]. The relevant work
could be summarized as two independent stages: relaxed learning
of user/item representations with some specific constraints and sub-
sequent bianry quantization. However, such two-stage approaches
suffer from a large quantization loss according to [30], so direct
optimization of matrix factorization with discrete constraints was
proposed. To derive compact yet informative binary codes, the bal-
anced and de-correlated constraints were further imposed [30]. In
order to incorporate content information from users and items,
content-aware matrix factorization and factorization machine with
binary constraints was further proposed [12, 16]. For dealing with
social information, a discrete social recommendation model was
proposed in [15].

Recently, the idea of compositional codes has been explored in
the compression of feature embedding [1, 23, 24], which has become
more and more important in order to deploy large models to small
mobile devices. In general, they composed the embedding vectors
using a small set of basis vectors. The selection of basis vectors
was governed by the hash code of the original symbols. In this
way, compositional coding approaches could maximize the storage
efficiency by eliminating the redundancy inherent in representing
similar symbols with independent embeddings. In contrast, this
work employs compositional codes to address the inner product
similarity search problem in recommender systems.

6 CONCLUSION AND FUTUREWORK
This work contributes a novel and much more effective framework
called Compositional Coding for Collaborative Filtering (CCCF).
The idea is to represent each user/item by multiple components
of binary codes together with a sparse weight vector, where each
element of the weight vector encodes the importance of the corre-
sponding component of binary codes to the user/item. In contrast to
standard binary codes, compositional codes significantly enriches
the representation capability without sacrificing retrieval efficiency.
To this end, CCCF can enjoy both the merits of effectiveness and
efficiency in recommendation. Extensive experiments demonstrate
that CCCF not only outperforms existing hashing-based binary
code learning algorithms in terms of recommendation accuracy,
but also achieves considerable speedup of retrieval efficiency over
the state-of-the-art binary coding approaches. In future, we will
apply compositional coding framework to other recommendation
models, especially for the more generic feature-based models like
Factorization Machines. In addition, we are interested in employ-
ing CCCF on the recently developed neural CF models to further
advance the performance of item recommendation.
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